セミナーレポート

少量データ向け深層学習技術NECデータサイエンス研究所 佐藤 敦

本記事は、国際画像機器展2019にて開催された特別招待講演を記事化したものになります。

敵対的特徴生成と,層ごとの適応的正則化

 少量データ学習技術で,NECが開発した技術を2つ紹介します。
 1つめは「敵対的特徴生成」です。従来の技術では,対象を回転させたり大きさを変えたりするデータ拡張や,ノイズを付加するなどしてデータを増やし学習していました。それに対してNECが開発した技術は,精度向上に有効な「認識が難しいデータ」を,中間層で自動的に作りながら学習することで,精度のよい識別を実現するものです。データの種類によらないため,専門家の調整が不要というメリットもあります。機械学習の精度評価に標準的に用いられる公開データセットによる評価では,MNIST(手書き数字認識),CIFAR-10(物体認識)ともに,従来と同精度を半分程度の学習データで実現しました。
 2つめは「層ごとの適応的正則化」です。学習データが少ない場合,学習データに対しては高い精度を出しますが,学習していないデータに対しては精度が低下する過学習という問題が顕著になります。これは,学習データに含まれるノイズにまで適合してしまうことが原因です。これを抑えるために使われるのが正則化で,より単純なモデルに誘導することで,学習データに対する過適合を軽減します。ここで重要なのは,正則化の強さを適切に設定することです。しかし,従来の深層学習では,どの層に対しても同じ強さの正則化を用いるため,過学習の層と学習が進まない層とが混在し,精度改善には限界がありました。開発した技術では,ネットワークの構造から学習の進む速さを層ごとに予測し,学習の進む速さに応じた正則化の強さを層ごとに自動設定します。すべての層で適切なバランスを取り,ネットワーク全体で効率的に学習を進行でき,実験結果では認識エラーを2割削減できました。
 今後の展望としては,Transfer Learning(転移学習)がトレンドになるという予測があります。他のデータやモデルを活用して精度を高めることが,転移学習の重要な技術になります。NECは,理化学研究所と共同で,2017年に「理研AIP-NEC連携センター」を設立しました。その活動テーマの1つが,今回ご紹介した少量の学習データで高精度を実現する学習技術の高度化であり,最先端の研究機関と連携して基本技術の開発を目指しています。

NECデータサイエンス研究所 佐藤 敦

1989年 東北大学大学院理学研究科博士課程了。理学博士。同年NEC入社,中央研究所にてパターン認識,機械学習の研究開発に従事。郵便区分機向け文字認識の開発,顔認証エンジンNeoFaceの開発にも携わる。1994~1995年 米国ワシントン大学客員研究員,2008年 米国マサチューセッツ工科大学客員研究員。現在,NECデータサイエンス研究所主席研究員。東京大学大学院情報理工学系研究科客員教授,理研AIP-NEC連携センター 副連携センター長を兼務。2010年度情報処理学会喜安記念業績賞,2012年度電子情報通信学会業績賞,2014年度全国発明表彰発明賞など受賞。

アーカイブもっと見る

医療画像へのAI応用とその未来
医療画像へのAI応用とその未来...(5/25) 大阪公立大学 健康科学イノベーションセンター スマートライフサイエンスラボ 特任准教授 植田 大樹
インフラ構造物点検におけるイメージング技術の活用
インフラ構造物点検におけるイメージング技術の活用...(3/25) キヤノン(株) イメージソリューション事業本部 IIS事業推進センター 主幹 穴吹 まほろ
生体認証技術を活用したデジタルトランスフォーメーションの最新事例~NEC I: Delightで実現する新たな体験~
生体認証技術を活用したデジタルトランスフォーメーションの最新事例~N...(1/25) 日本電気(株) エンタープライズビジネスユニット デジタルインテグレーション本部 勝浦 啓太
画像を見つめて50年
画像を見つめて50年...(1/25) カーネギーメロン大学 ワイタカー記念全学教授 金出 武雄

▼ プラチナスポンサー ▼

株式会社リンクス

東芝テリー株式会社

▼ メディアパートナー ▼

エキスポ・ゲートブリッジ

CIOE2025

APE2025

AW2025

オープンイノベーションEXPO

ロボットワールド

ダウンロード

展示会FAQ

IAJ-A3共同開催 画像技術セミナー

第34回三次元工学シンポジウム

第23回偏光計測研究会